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Abstract

An analytical approach to the acoustic input impedance of vibrating cylindrical pipes is considered. The variation in the

acoustic impedance introduced by wall vibrations is calculated using the integro-modal method taking into account

axisymmetric shell vibration. It is shown that this variation can be interpreted as a small correction in the acoustic input

impedance when the walls of the shell do not influence the acoustics in the pipe. Special conditions such as the mechanical

resonance condition and spatial coincidence effect lead to maximum values of the correction factor for the input

impedance. The results allow us to determine particular shell parameters for which the input impedance is strongly affected

by wall vibrations.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Many applications in mechanical engineering are related to the vibroacoustics of cylindrical shells. In
general, these elastic ducts are filled and surrounded with fluid, leading to complex couplings between the
structure and the internal and external fluids. This is the case for cylindrical shells, which constitute structure
models, such as aircraft fuselages or submarine hulls. Industrial pipes and wind music instruments are other
examples of this configuration. When considering such cylindrical tubes as vibroacoustic wave-guides, they
can be characterized by their input impedance, which in this case depends on the fluid/structure interaction.
The aim of this paper is to develop a model for the input impedance of a vibrating elastic cylindrical shell of
finite length simply supported at both ends and filled with fluid. The attention is focused on the interaction
between the plane acoustic mode and the symmetric shell modes also known as breathing modes. This model
allows us to determine under which conditions shell vibrations can significantly affect the acoustic input
impedance. The final application of this study is related to musical acoustics as explained below.

The vibroacoustics of pipes have been extensively studied throughout the literature. Wave propagation
inside infinite cylindrical elastic shells containing fluid has been studied in Ref. [1]. Dispersion curves and the
energy distribution of free waves of the system are investigated and interpreted. In the case of light fluid, the
dispersion curves of the coupled system are found to be close to those of the uncoupled systems. For heavy
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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fluids, the fluid-loading term has an important effect on the dispersion curves and leads to complex
interpretation of the various branches [2–4]. For applications related to the active control of pipe vibrations,
the determination of the response of an infinite elastic fluid-filled shell excited by elementary sources is
often required. This is possible using free wave expansions: the case of a harmonic point force excitation
(see Ref. [5]), and the case of an interior monopole source (see Ref. [6]) are presented in Ref. [7].

The previously mentioned studies are related to wave propagation into infinite systems. The fact that the
propagation modes of the fluid/structure coupled system are not orthogonal means that they are not user-
friendly when attempting to describe the behaviour of finite systems. A much more convenient way of doing
this is to represent fluid/shell system oscillations using functions associated with the uncoupled systems [8–10]:
the displacement field of the shell is expanded over the in vacuo structural modes and the inner acoustic field is
written as a multimodal expansion using transverse modes of the rigid wave-guide (plane mode and higher
order modes). For given excitation conditions, the integro-modal method provides the acoustic and vibratory
fields [11–14]. This approach is employed in this paper to describe the interaction between wall vibrations and
the air column. The same method has been used in Ref. [15] to compute external radiation impedances, which
are useful when describing the external acoustic radiation of the cylinder into light or heavy fluid. In addition,
the method has been used in Ref. [16] to determine the internal radiation impedances of a shell of finite length
with various acoustic boundary conditions imposed at both ends of the air column. The influence of the mean
flow on internal radiation impedances of a finite cylindrical shell with infinite rigid extensions has been studied
in Ref. [17].

Wind musical instruments are particular acoustic wave-guides, in which vibroacoustic couplings between
the air column and the body of the instrument occur. The walls of the instruments are able to vibrate, resulting
in internal and external acoustic radiations. The evaluation of the importance of the role played by these
vibrations on the musical sound produced by the instrument is an open question (see Ref. [18] for a
bibliography review). In Ref. [19], a vibroacoustic model of a simplified instrument has been proposed in order
to quantify the wall vibrations effect that the body has on tone. This simplified instrument consists of a simply
supported cylindrical elastic shell filled with and surrounded by fluid. Such a model enables the calculation of
the forced response of the system in the frequency domain, taking into account three types of couplings: the
shell/internal fluid coupling, the shell/lateral external fluid coupling and the inter-modal coupling induced by
acoustic radiation at the end of the tube. Since musical instruments do not work in forced regime, time domain
simulations of the self-induced oscillation have been developed for rigid-walled instruments [20]. For these
simulations, only the acoustic input impedance characterizes the instrument. The input impedance model
presented in this paper is developed in order to be used as input data for time domain simulations of sounds
produced by clarinet-like instruments. Since the wall vibrations can either be noted or disregarded,
comparisons between these two cases allow us to determine in which case the wall vibration effect is audible.
The first results related to these comparisons are available in Ref. [21].

The structure of the paper is as follows: in Section 2, the governing equations of the shell/internal fluid
coupled problem are presented. The input impedance is then obtained using projections of the vibratory and
acoustic fields on appropriated functional bases: the in vacuo shell modes for the structural displacement field
and plane wave expansion for the acoustic field. The form of the acoustic impedance at the entrance of the
vibrating wave-guide is presented and the effect of wall vibrations is expressed as a correction term of the well-
known acoustic impedance of a rigid pipe. In Section 3, attention is focused on the study of the interaction
between the acoustic plane wave and the first breathing mode: the structure of the correction term is analysed
in detail and the effects of structural resonances and the coincidence effects on the acoustic impedance are
discussed using illustrating examples. Finally, a summary of the results is presented.

2. Vibroacoustic model

2.1. Formulation of the problem

We consider a homogeneous, isotropic, thin-walled circular cylindrical shell of length L, mean radius a, and
thickness h. The shell material has a Young’s modulus E, a Poisson’s ratio n and a density rs. The internal
cylindrical cavity is filled with a fluid characterized by its density r0, and its sound speed c. Surfaces S, S0, SL
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Fig. 1. Notations for the vibrating cylinder.
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described in Fig. 1, correspond to the lateral surface of the cylinder (r ¼ a), and to the circular surfaces of the
cylinder at coordinates z ¼ 0 and L, respectively. Let Di be the fluid domain inside the cylinder, delimited by S,
S0, SL, and let n be the unitary normal vector to the cylinder in the outward direction.

The presence of external fluid which surrounds the shell is ignored in this study: it is known that the external
fluid/structure coupling leads to added mass and added damping effects for the shell, and also to inter-modal
coupling effects [15,18,19]. In the case of light external fluid, these effects can be neglected for the calculation
of the shell response and their influence on the acoustic input impedance can be considered as negligible when
compared to the influence of inner fluid/shell coupling. As such, we only consider the inner fluid/shell
interaction. The excitation of the system consists of a harmonic driving piston which imposes the particle
velocity at one end of the tube. The other extremity is supposed to be open. Such a configuration allows us to
compute the acoustic input impedance for the vibrating tube.

2.2. Governing equations

In a harmonic regime (the factor e�jot is omitted) two equations govern the problem. The first one is the
Helmholtz equation,

ðr2 þ k2
ÞpðMÞ ¼ 0; for M 2 Di (1)

where p is the acoustic pressure inside the cylindrical cavity and k ¼ o=c is the acoustic wave number.
Dissipative viscothermal effects induced by acoustic boundary layers are considered using the complex wave
number k, or in an equivalent way by using a complex sound velocity [12,16]. The Helmholtz equation is
associated with appropriate acoustic boundary conditions on surfaces S0, S, and SL. On the surface S0, the
acoustic normal velocity V is supposed to be equal to a known value denoted by V0

V ðMÞ ¼ V 0; for M 2 S0. (2)

The acoustic velocity distribution V0 is supposed to be uniform and can be seen as the excitation source of
the system. On the lateral surface S, continuity of the normal velocities of the fluid (denoted by VS(M)) and of
the shell (denoted by _wðMÞ) is expressed as

VSðMÞ ¼ _wðMÞ; for M 2 S. (3)

On the surface SL, the tube is supposed to be open. Acoustic radiation into the external fluid through SL is
occurring and can be described using the appropriate impedance condition on surface SL [22]. Such radiation
induces additional inter-modal coupling between the transverse acoustic modes of the waveguide [19]. Since
this study is focused upon inner fluid/shell interaction, this phenomenon has not been taken into account. We
therefore consider that the acoustic pressure is equal to zero on SL:

pðMÞ ¼ 0; for M 2 SL. (4)

The second governing equation is the shell motion equation. Generally speaking, the motion of the middle
surface of a cylindrical shell can be described by three displacements u, v and w corresponding to longitudinal,
circumferential, and radial motions, respectively. When considering only the axisymmetric vibrations,
displacements u and w are uncoupled to the torsion motion v. Furthermore, since no mechanical excitation is
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imposed in the circumferential direction, the torsional motion v does not play any role and, as such is not
considered in the following: the dynamic of the shell can thus be described by a two components vector
X ¼ ½u w�t. In the framework of the Donnell shell theory, the motion equation of the fluid-loaded shell can be
written in the following form [23]:

�rSho2XðMÞ � rSho2
aLðXðMÞÞ ¼ pðMÞn; for M 2 S, (5)

where

L ¼

a2 q
2
�

qz2
na

q�
qz

�na
q�
qz
�1� b a2 q

2
�

qz2

� �2

2
66664

3
77775, (6)

with b ¼ h2=12a2 and oa ¼
1
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=ðrSð1� n2ÞÞ

p
. The shell operator L is the shell Donnell operator written in a

simplified form by considering only the axisymmetric vibrations. In Eq. (6), b is a non-dimensional thickness
parameter and oa denotes the shell ring frequency. Motion Eq. (5) is associated with the mechanical boundary
conditions: the shell is supposed to be a simply supported boundary at both ends (z ¼ 0;L). This set of
particular boundary conditions leads to an analytically tractable solution for the normal in vacuo shell modes
[23].

This work aims to evaluate the wall vibration effect of a cylinder on its acoustic impedance. To achieve this
objective, governing equations (1) and (5), associated to acoustic boundary conditions (2), (3), (4) and simply
supported conditions for the shell have to be solved.

2.3. Resolution method

An in vacuo modal expansion of the shell displacement field and an integro-modal expression of the inner
acoustic pressure field are used in this part in order to formulate two coupled equations from governing form
governing equations (1) and (5) of the system.

2.3.1. Modal expansion of the shell displacement field

Since the excitation and the response of the shell are assumed to be axisymmetric, it makes sense to only
consider axisymmetric modes for the description of this response. These modes, also called breathing modes,
are denoted by Uq (q being a modal index). Notations and useful results for the computation of their
eigenfrequencies and modeshapes are briefly presented in the Appendix A. The shell displacement field is thus
expressed as a linear combination of in vacuo modes Uq, involving the unknown modal amplitudes Aq

XðMÞ ¼
X1
q¼1

AqUqðMÞ, (7)

where M is a point located on the middle surface of the shell. Inserting modal expansion (7) into the shell
motion equation leads to the following form for the shell motion equation:

rSh
X

q

ð�o2 þ o2
qÞAqUqðMÞ ¼ pðMÞn. (8)

By projecting Eq. (8) on a particular mode Uq and using orthogonal properties of modal basis functions (see
relation (A4) in the Appendix A), the motion equation takes the form

mqð�o2 þ o2
qÞAq ¼ hpðMÞnjUqi, (9)

where mq is the modal mass of mode q and where

hpðMÞnjUqi ¼

Z
S

pðMÞnUqdS ¼ 2pa

Z z¼L

z¼0

pðzÞ sinðqpz=LÞdz, (10)
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is the generalized force acting on the shell. Shell mechanical damping is taken into account by introducing a
structural damping term (involving the damping parameter Zq) into Eq. (9) which is finally written as

mqð�o2 þ o2
qð1� jZqÞÞAq ¼ hpðMÞnjUqi. (11)

From expression (11) it can be concluded that if the inner acoustic pressure p is known, the shell modal
amplitudes Aq and the shell response X(M) can be computed: thereby Eq. (11) is the first coupled equation of
the problem.

2.3.2. Description of the inner acoustic field using the integro-modal approach

To obtain the inner pressure field, its integral formulation is taken as the starting point [12,13]:

pðMÞ ¼

Z
S0;S;SL

½GðM;M0ÞqnPðMÞ � pðMÞqnGðM ;M0Þ�dS0. (12)

In a general way, the Green’s function of a waveguide G(M,M0) can be expanded using the propagation
modes of the duct. These modes are orthonormal eigenfunctions which are the solutions of the two-
dimensional transverse Neumann problem associated with the cross-section of the duct. Since the study is
focused only on the acoustic impedance of the plane mode, we limit this expansion to one term, which
corresponds to the plane acoustic mode. On each cross section, the acoustic pressure and velocity are thus
supposed to be uniform. In this case, the Green’s function is written as

GðM ;M0Þ ¼ Gðz; z0Þ ¼
j

2kpa2
ejkjz�z0j. (13)

By replacing expression (13) into the integral representation (12) and after some algebra, the inner acoustic
pressure is found to be of the form

pðMÞ ¼ ½Bþ þDþðzÞ�ejkz þ ½B� þD�ðzÞ�ejkðL�zÞ. (14)

Thus, the acoustic field can be interpreted as the superposition of two travelling waves in opposite directions
with amplitudes depending on z. From Eqs. (12) and (13), it is shown that the amplitudes B+, B�, D+(z), D�(z)
are defined by

Bþ ¼
j

2kpa2

Z
S0

ð�jroÞV ðMÞdS þ
1

2pa2

Z
S0

pðMÞdS ¼
rc

2
V 0 þ

Pð0Þ

2
, (15)

B� ¼
j

2kpa2

Z
SL

jroV ðMÞdS þ
1

2pa2

Z
SL

pðMÞdS ¼ �
rc

2
V ðLÞ þ

PðLÞ

2
, (16)

DþðzÞ ¼ �
r0c

a

Z z

0

e�jkz0 _wðz0Þdz0, (17)

D�ðzÞ ¼ �
r0c
a

e�jkL

Z L

z

ejkz0 _wðz0Þdz0, (18)

where P(0), P(L), V0, V(L) denote the acoustic pressure and the axial particle velocity at the extremities of the
tube (x ¼ 0 and x ¼ L). More useful expressions of the coefficients B+, B�, D+(z), D�(z) can be computed.
Firstly, by applying the acoustic boundary conditions (2) and (4) to the relations (15) and (16), it can be shown
that

Bþ ¼
1

1þ e2jkL
½r0cV 0 þD�ð0ÞejkL �DþðLÞe2jkL�, (19)

B� ¼
ejkL

1þ e2jkL
½�r0cV 0 �D�ð0ÞejkL �DþðLÞ�. (20)

Secondly, since coefficients D+(z), D�(z) only depend upon the wall vibrations, they can be expressed as
functions of the modal amplitudes Aq alone. Indeed, the normal velocity of the shell is obtained by considering
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the radial component of the modal expansion (7):

_wðzÞ ¼ �jo
X1
q¼1

Aq sinðqpz=LÞ. (21)

Substituting Eq. (21) in expressions (17) and (18) leads to explicit expressions of the coefficients D+(z),
D�(z):

DþðzÞ ¼
jr0co

a

X
q

Aq

½k2
� ðqp=LÞ2�

�
qp
L
þ jk sin

qp
L

zþ
qp
L

cos
qp
L

z
� �

e�jkz
h i

, (22)

D�ðzÞ ¼
jr0co

a

X
q

Aq

½k2
� ðqp=LÞ2�

ð�1Þq
qp
L
þ jk sin

qp
L

z�
qp
L

cos
qp
L

z
� �

ejkðz�LÞ
h i

. (23)

Relations (19), (20), (22) and (23) show that if the coefficients Aq (or in an equivalent manner the shell radial
velocity _w) are known, then the coefficients B+, B�, D+(z), D�(z) are also known and the inner acoustic
pressure can be computed from Eq. (14): Eq. (14) is thus the second coupled equation of the problem.
2.4. Acoustic impedances

The resolution of the coupled equations (11) and (14) is presented in this section, leading to the definition of
three kinds of impedance: impedance of the rigid tube, internal radiation impedance and the acoustic
impedance of the vibrating tube.
2.4.1. Impedance of the rigid tube and structure of the inner acoustic field

By inspecting relations (19), (20), (22), (23), it can be deduced that whenever the cylinder walls do not
vibrate ( _w ¼ 0 and Aq ¼ 0 for all values of q), then coefficients D+(z) and D�(z) are null. This being the case,
the acoustic pressure given by Eq. (14) is called blocked pressure, pblocked(z) and corresponds to the pressure
generated in a rigid tube by the input velocity excitation V0. It can be obtained by considering V 0a0 and by
setting Aq ¼ 0 in Eqs. (14), (19), (20), (22), (23):

pblockedðzÞ ¼ �jr0cV0
sin kðL� zÞ

cos kL
. (24)

When the tube is vibrating, the pressure is written as

pðzÞ ¼ pblockedðzÞ þ pwallðzÞ. (25)

where pwall(z) corresponds to the pressure generated by the wall vibrations only. This term is obtained by
setting V0 ¼ 0 and by considering Aqa0 in Eqs. (14), (19), (20), (22), (23). After some algebra, it is shown that

pwallðzÞ ¼ �2
r0co

a

X
q

Aq

½k2
� ðqp=LÞ2�

qp
L

sin kðL� zÞ

cos kz
þ jk sin

qp
L

z

� �
. (26)

The input acoustic impedance of the vibrating tube is defined by

Z ¼
pð0Þ

V0
¼

pblockedð0Þ

V 0
þ

pwallð0Þ

V 0
. (27)

The term

pblockedð0Þ

V0
¼ �jr0c tan kL ¼ Zr, (28)

corresponds to the input acoustic impedance of the rigid tube. The contribution pwallð0Þ=V 0 accounts for the
wall vibrations. Its calculation requires the computation of the shell response.
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2.4.2. Internal radiation impedances and shell response

The shell response is obtained from Eq. (11) in which generalized forces present in the right hand term have
to be estimated. The generalized forces associated with the acoustic pressures pblocked and pwall are found to be

hpblockednjUqiS ¼ 2jr0cV 0pa tan kL
qp=L

k2
� ðqp=LÞ2

, (29)

hpwallnjUqiS ¼ jo
X

q0

Zqq0Aq0 , (30)

where the impedances Zqq0 are called internal radiation impedances. For mutual-impedances (qaq0), the
following is obtained:

Zqq0 ¼ �jr0cS
2ðqp=LÞðq0p=LÞ tan kL

aL½k2
� ðqp=LÞ2�½k2

� ðq0p=LÞ2�

 !
; , (31)

where S ¼ 2paL is the surface of the cylinder. For direct or self impedances ðq ¼ q0Þ, the internal radiation
impedance results in

Zqq ¼ �jr0cS
2ðqp=LÞ2 tan kL

aL½k2
� ðqp=LÞ2�2

þ
k

a½k2
� ðqp=LÞ2�

 !
. (32)

Impedance Zqq0 describes the interactions between shell modes Uq and Uq0 via the fluid. The expressions of
Zqq0 coincide with those obtained in Ref. [16] for the more general case where radial higher order acoustic
modes are taken into account for the description of the acoustic field. Writing the shell motion equation in the
form

mq �o2 � jo
Zq

o
þReðZqqÞ

� �
þ o ImðZqqÞ þ o2

q

� �
Aq ¼ hpblockedðMÞ � njUqi þ jo

X
q0aq

Aq0Zqq0 (33)

allows us to give a physical interpretation of these radiation impedances : mutual impedances (Zqq0 with q 6¼q0)
describe the inter-modal coupling between different shell modes due to internal acoustic coupling. Direct
impedances Zqq ¼ ReðZqqÞ þ j ImðZqqÞ describe resistive and reactive effects induced by the inner fluid on the
structural modes.

For light fluids such as air, the structure is not significantly affected by the fluid loading. Light fluid
approximation implies disregarding the coupling terms related to the mutual-impedances Zqq0 (q 6¼q0) in Eq.
(33). When employing this approximation, the coefficients of shell modal expansion are obtained from (33)
and (29)

Aq ¼ jr0cV02pa
ðqp=LÞ tan kL

½k2
� ðqp=LÞ2�½�mqo2 þmqo2

qð1� ZqÞ � joZqq�
, (34)

permitting the shell response to be calculated.

2.4.3. Acoustic impedance of the vibrating tube

Acoustic input impedance of the vibrating tube is finally obtained by substituting Eq. (34) into Eq. (26).
This impedance (27) can then be written in the form

Z ¼ Zrð1þ CÞ. (35)

where coefficient C is given by

C ¼ 4pr0co tan kL
X

q

ðqp=LÞ2

½ðo=cÞ2 � ðqp=LÞ2�2½�mqo2 þmqo2
qð1� jZqÞ � joZqq�

. (36)

It can be seen that the vibrating cylinder impedance Z is the sum of two terms. The first one corresponds to
the rigid cylinder impedance Zr given by Eq. (28), whereas the second is a complementary term equal ZrC
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which depends upon the vibration on the cylinder walls. Coefficient C is called correction coefficient and
describes the change in the rigid input impedance induced by the wall vibrations.

3. Wall vibration influence on the input acoustic impedance

3.1. Description of main wall vibration effects

Influence of the inner wall vibration effect on the acoustic input impedance of the tube cylinder can be
understood as a correction of the rigid acoustic input impedance, which is studied in this section.

3.1.1. Structure of the impedance correction term

The structure of the impedance correction term can be analyzed by only considering the first breathing
mode of the shell. Hence, the correction term is written as

C ¼
4pr0co tan kLðqp=LÞ2

½ðo=cÞ2 � ðp=LÞ2�2½�mqo2 þmqo2
qð1� jZqÞ � joZqq�

; with q ¼ 1. (37)

From Eq. (35) it can be observed that the input acoustic impedance is severely perturbed by the wall
vibration if the correction factor C is significant compared to unity. This may be due to several reasons.

The correction factor is inversely proportional to the modal mass mq which is proportional to the density of
the material of the shell. In general terms, this means that the smaller the density of the material is, the bigger
the wall vibration effect. The correction factor is also proportional to the factors
½�mqo2 þmqo2

qð1� jZqÞ � joZqq�
�1, ½ðo=cÞ2 � ðp=LÞ2��2, and tan(kL). When at least one of these factors

takes high values, the correction term also takes high values and the wall vibration effect is important. The
conditions �mqo2 þmqo2

qð1� jZqÞ � joZqq ffi 0 and ðo=cÞ2 � ðp=LÞ2 ffi 0 correspond to the structural
resonance effects and spatial coincidence effects respectively. The condition ½tanðkLÞ��1 ¼ 0 is the acoustic
resonance condition of the associated rigid system. When these effects are produced at similar frequencies, the
wall vibration effect becomes important. In order to understand the nature of the effects induced by these
three conditions, they will be analyzed separately in the following three paragraphs.

3.1.2. Structural resonance effect

The condition �mqo2 þmqo2
qð1� jZqÞ � joZqq ffi 0 corresponds to a mechanical resonance condition. For

a light fluid the fluid loading is very small and this condition is nearly equivalent to

�mqo2 þmqo2
qð1� jZqÞ ffi 0 (38)

For a conservative system ðZq ¼ 0Þ this condition is satisfied when the frequency is strictly equal to a shell
eigenfrequency. These eigenfrequencies are defined by Eq. (A.7) and are directly dependent on the mechanical
and geometrical characteristics of the shell.

3.1.3. Spatial coincidence effect

The correction factor defined by relation (37) inversely depends upon the factor ðo=cÞ2 � ðqp=LÞ2. The
condition ðo=cÞ2 � ðqp=LÞ2 ¼ 0 can only be strictly satisfied if fluid damping is ignored. In this case, the
celerity c is real and the condition is satisfied when the acoustic wavenumber k ¼ o=c is equal to one of values
qp=L ¼ kq. This type of condition is a coincidence condition. This wavenumber condition can be read in the
frequency domain: each coincidence wavenumber kq is related to a particular coincidence frequency
f q ¼ kqc=2p, which corresponds to an acoustic antiresonance frequency. In other words, each shell mode q

produces an alteration in the q-th antiresonance of the input acoustic impedance. This can be explained by the
fact that for these antiresonance frequencies, the axial profile of the acoustic pressure along the tube
satisfactorily matches one of the shell breathing mode shapes. Indeed, for these frequencies, the acoustic
pressure is equal to zero at both ends. The spatial coincidence effect corresponds to the spatial matching
condition between the acoustic profile and the structural modes.
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If the value of k is close to a coincidence wavenumber, the value for C can be studied using a series
expansion: when considering that k ¼ qp=Lþ �, with �j j51, we can write

CðkÞ /
tanðkLÞ

½ðkÞ2 � ðqp=LÞ2�2
�

L3

4q2p2�
. (39)

Expression (39) shows that the correction factor diverges and tends to an infinite value when j�j tends
towards zero. Thus, it can be concluded that for a lossless system, the coincidence condition is satisfied exactly
at each acoustic antiresonance and induces a divergence of the input acoustic impedance for these values. The
effect of the losses consists of a reduction in the influence of this effect upon the global response of the system.

3.1.4. Effect of the acoustic resonances

The correction factor is proportional to tan(kL) (see relation (37)). That means at frequencies for which
impedance Zr is maximum (that is for acoustic resonances frequencies of the rigid tube), the correction factor
also takes large values. Thus, the wall vibrations can reinforce the resonance of the acoustic input impedance.

3.2. Typical numerical applications

3.2.1. Characteristics of the system

With the purpose of illustrating and quantifying the wall vibration effect on the input acoustic impedance, the
impedance correction factor C defined by Eq. (37) has been computed numerically in this section for some
particular shells. Tables 1 and 2 contain the characteristics of the shell used for the computations: the geometrical
parameters of the shell are presented in Table 1 take fixed values for all the cases carried out for all cases conducted
henceforth. Having in mind the musical acoustics application described in the introduction, length and radius of
the shell are those of a clarinet. The characteristics of the used materials are indicated in Table 2. They have been
chosen in order to be illustrative of the different coincidence conditions. It is clear that the chosen material are not
realistic if we have in mind the musical application pointed out in the introduction: polymers are not used by
instruments’ makers to build musical tubes. These materials are only used in our study to illustrate the importance
of the various coupling mechanisms. For all computations, the structural damping coefficient has been fixed at
Zq ¼ 0:01 and the viscothermal dissipation in the air column is taken into account by considering that

k ¼
o
c
¼

o
c0
þ að1� jÞ, (40)

where a � 3:10�5
ffiffiffi
f

p
=a and c0 ¼ 343:37ms�1 at 20 1C (see Ref. [26]).
Table 1

Geometrical parameters of the shell

Radius (a) 7.12mm

Length (l) 0.5m

Thickness (h) 0.5mm

Table 2

Density, Young’s modulus and Poisson’s ratio of materials used in the numerical applications

Material Density rS (kg/m3) Young’s modulus E (109N/m2) Poisson’s ratio

Steel 7800 210 0.29

Polymer A 1050 1.8 0.33

Aluminum 2710 70 0.33

Wood A 525 13 0.3

Polymer B 1030 0.25 0.3

Polymer C 1030 0.115 0.3
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Fig. 2. Magnitude of the correction factor of the acoustic input impedance due to wall vibrations of a cylindrical shell made with steel.

Only the first breathing mode (eigenfrequency fR1 ¼ 5188Hz) has been considered. Peaks Ai (i ¼ 1; 2; . . .), C1 and R1 indicate the

frequencies of the acoustic resonances, of the spatial coincidence condition and of the mechanical resonance respectively.

R. Picó et al. / Journal of Sound and Vibration 301 (2007) 649–664658
3.2.2. The case of a steel shell

Fig. 2 shows the magnitude for the correction factor of the input acoustic impedance, induced by the wall
vibration effect, when only the interaction between the plane acoustic mode and the first breathing mode is
considered. For this numerical application, the shell material is steel. In order to evaluate the importance of
wall vibrations, the magnitude of the non-dimensional coefficient C must be compared to unity (horizontal
continuous line).

It is found that the wall vibrations have a very small influence on the input impedance since the correction factor
C is always lower than 10�4. However, C has some local maxima as previously discussed. Three kinds of peaks,
corresponding to the three conditions described in Sections 3.1.2, 3.1.3 and 3.1.4 can be observed. The mechanical
resonance frequency of the first breathing mode (referred to as R1 in Fig. 2) is at f R1

¼ 5188Hz. The spatial
coincidence effect (C1) is reached for f C1

¼ 339Hz. As expected (see Section 3.1.4), local maxima for C can also be
observed for each acoustic resonance frequency. These are denoted by Ai (i ¼ 1; . . . ;N) in Fig. 2. Except for these
local maxima R1, C1 and Ai, the correction factor is negligible for all the frequencies of the steel pipe.

3.2.3. The case of a polymer shell

Correction factor C has been computed for a polymer cylinder with the same geometrical features as the
previous one. This material is lighter than steel and its Young’s modulus is much smaller (see characteristics of
polymer A in Table 2). The magnitude of the correction factor for this shell is represented in Fig. 3 as a
function of the frequency. It can be seen that the global resonance pattern of the function is similar to that
given for steel. However, two main differences can be pointed out: the first being that, in the entire frequency
range, the correction factor is greater for polymer than for steel (however, the correction factor C is always
lower than 10�2). This can be explained by the fact that the correction factor is inversely proportional to the
wall density of the shell. The second difference is that the mechanical resonance R1 is much smaller for the
polymer f R1

� 1309Hz than for steel. Thus, the local maximum of jCj due to R1 is observed at a lower
frequency than is the case for the steel shell.

In Fig. 4a, the vibrating acoustic input impedances of four cylinders made of different materials have been
plotted: steel, aluminium, wood A (Epicea) and polymer A. The impedance of a rigid tube has also been
plotted for comparison. The Young’s modulus and density of the used materials are shown in Table 2. No
differences can be seen except for a small shift of frequency in the case of the polymer shell: the representation
is focused on the first antiresonance of the shells in Fig. 4b, which corresponds to the coincidence condition of



ARTICLE IN PRESS

Fig. 3. Magnitude of the correction factor of the acoustic input impedance due to the wall vibrations of a cylindrical shell made by

polymer A. Only the first breathing mode (eigenfrequency fR1 ¼ 1309Hz) has been considered.

Fig. 4. (a) Acoustic input impedance of a rigid tube compared with four vibrating shells made of ?? steel, aluminium,

wood A and polymer A. For each case, only the breathing mode has been considered. (b) Zoom at the first antiresonance of

the acoustic input impedance.
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the first breathing mode. It can be noted that the lower the density of the shell material, the more important
the shift in the antiresonance frequency. However, this effect remains very small.

3.3. Special material parameters leading to strong vibroacoustic coupling

For some specific frequency conditions, shell modes interact strongly with acoustic modes, leading to important
changes in the acoustic response of the tube. These conditions are satisfied for special material parameters, given
for each case. In this part, several special phenomena linked to shell/fluid coupling are studied.
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3.3.1. The case of a mechanical resonance close to an acoustical resonance

If the eigenfrequency of the first breathing shell mode is close to an acoustic resonance, an important
alteration in the input acoustic impedance next to the acoustic resonance peak can be observed. In this case,
the correction factor actually takes large values when the frequency is in the vicinity of the first resonance
frequency. This is due to the fact that in the expression of C (see Eq. (37)), both terms tan(kL) and ð�mqo2 þ

mqo2
qð1� jZqÞ � joZqqÞ

�1 take high values. A numerical application has been carried out in the case of a
polymer shell. Its characteristics are given in Table 2 (polymer B). The choice of these parameters is achieved
in such a way that the frequency of the first breathing mode ðf R1

¼ 492HzÞ is close to the second acoustic
resonance (f 2 ¼ 510Hz). In these conditions, the acoustic impedance is strongly modified by the wall
vibrations as shown in Fig. 5a and b.

3.3.2. Mechanical resonance and spatial coincidence effects simultaneously satisfied

When the mechanical resonance and the coincidence condition are produced at close frequencies, the wall
vibration effect becomes drastically important. Indeed, in the expression of C (see Eq. (38)), both terms
ððo=cÞ2 � ðqp=LÞ2Þ�2 and ð�mqo2 þmqo2

qð1� jZqÞ � joZqqÞ
�1 take large values. In order to illustrate this

configuration, the Young’s modulus and the density of the material of polymer C (see Table 2) are determined
in a way that the shell resonance ðf R1

¼ 334HzÞ is produced nearly at the frequency of the first acoustic
antiresonance ðf C1

¼ 339HzÞ. The correction factor for this frequency presents a significant peak which is
much higher than unity. As it can be seen in Fig. 6, the acoustic input impedance of the vibrating cylindrical
shell drastically changes. The wall vibration effect becomes so important that the acoustic behaviour of the
shell is no longer comparable to the equivalent rigid shell.

3.4. Multimodal model analysis

In Section 3.3, the shell modal expansion has been restricted to the first shell-breathing mode, allowing the
identification and an understanding of the main coupling effects. In this section, the effect of several breathing
modes on the tube input acoustic impedance is considered. The cases of 2 and 10 modes are presented and
allow us to generalize with regards to the conclusions of the previous section.
Fig. 5. (a) Acoustic input impedance of a ?? rigid cylinder and a wall vibrating cylinder made of polymer B. Only the first

breathing mode (eigenfrequency fR1 ¼ 492Hz) has been considered. (b) Zoom at the second acoustic resonance.
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Fig. 6. (a) Acoustic input impedance of a ?? rigid cylinder and a wall vibrating cylinder made with polymer C. Only the first

breathing mode (fR1 ¼ 334Hz) has been considered. (b) Zoom at the first acoustic antiresonance.

Fig. 7. Magnitude of the correction factor of the acoustic input impedance induced by the wall vibration of a steel shell. The first (q ¼ 1,

fR1 ¼ 5188Hz) and the second (q ¼ 2, fR2 ¼ 10374Hz) breathing modes are considered.

R. Picó et al. / Journal of Sound and Vibration 301 (2007) 649–664 661
The magnitude of the correction factor is shown in Fig. 7 for two shell modes (q ¼ 1 and 2) for a shell made
of steel. The consequence of considering two shell modes is that two coincidences and two resonances exist and
lead to local maxima in the correction factor. Both spatial coincidence conditions are satisfied at frequencies
f C1
¼ 339 and f C2

¼ 678Hz. The two resonance conditions are satisfied at frequencies f R1
¼ 5188 and

f R2
¼ 10374Hz.

The wall vibration effect of a great number of mechanical modes is now considered. The truncation of the
structural bases is fixed on 10 mechanical modes. Fig. 8 shows the magnitude of the correction factor for the
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Fig. 8. Magnitude of the correction factor of the acoustic input impedance induced by the wall vibration of a steel shell. The structural

modal basis has been truncated at 10 modes.
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input acoustic impedance, whose physical interpretation is the natural extension of the previous cases: maxima
for the correction factor are found when spatial coincidence conditions, mechanical resonance conditions or
acoustic resonance conditions are satisfied.
4. Conclusions

A vibroacoustic model of a simply supported thin cylindrical shell has been developed in order to evaluate
the inner fluid/shell coupling and quantify the wall vibration effect on its acoustic behaviour. The input
acoustic impedance of the tube vibrating has been obtained analytically and can be understood as a very small
variation of the plane mode impedance of an equivalent rigid cylinder. The plane acoustic mode, which is
dominant below the first cut-off frequency interacts with the shell modes which have the same symmetry, and
as such, this is only coupled to the shell breathing modes. It is found that in general the vibroacoustic coupling
is negligible, which leads to a very small correction of the input impedance. However, for some special
materials, the wall vibration effect becomes very important. Three phenomena underlie this singular
behaviour: a mechanical resonance; a spatial coincidence effect; and, an acoustic resonance. If two of these
phenomena occur simultaneously, the perturbation effect becomes significant and the acoustic resonances and
antiresonances of the tube can be significantly altered.

The application, which has motivated this study concerns the quantitative evaluation of the influence of the
wall vibrations of a wind instrument on the emitted sound. Since the coupling between shell and internal
fluid is very weak, one can expect that wall vibration does not disturb the acoustical behaviour of the
instrument in a significant way. For classical materials used by instruments’ maker (wood or metal) and for a
geometry close to the one of the clarinet, the fact that this perturbation is very small is mostly due to the fact
that breathing modes of the tube have very high eigenfrequencies. However, it is known that the first modes of
a shell are generally not the breathing modes but involves asymmetric motions of the cross sections. This is the
case of ovalling modes for example. In a theory in which no faults in symmetry are considered, these
asymmetric modes are not coupled to the acoustic plane modes which is dominant at low frequency and which
govern the acoustic behaviour of the instrument. When small faults in symmetry, which always exist in
practical cases are considered, additional coupling between ovalling modes and acoustic plane modes have to
be considered.
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Appendix A. Structural modal basis

The aim of this appendix is to briefly review the main results, that permit the computation of the in vacuo

shell breathing modes Uq. These modes are axisymmetric and involve only coupled motions in the axial and
radial directions. Their modeshape can be written as [23,24]

Uq ¼
Uq cosðqpz=LÞ

W q sinðqpz=LÞ

" #
, (A.1)

where the ratio between the modal amplitudes Uq and Wq is given by

Uq

W q

¼
nðqpa=LÞ

ðqpa=LÞ2 � ðoq=oaÞ
2
. (A.2)

In this paper, the normalization convention for modes Uq is given by W q ¼ 1. The mode Uq, associated to
the eigenfrequency oq is the solution of the conservative homogeneous problem

rShðo2
aLþ o2

qÞUq ¼ 0, (A.3)

and satisfies a mass weighted orthogonality relationship [25],

hUqjUq0 i ¼

Z
S

UqUq0rShdS ¼ mqdqq0 , (A.4)

where dqq0 is the Kronecker notation, and where the generalized mass or modal mass mq is given by

mq ¼ rShpalðU2
q þW 2

qÞ. (A.5)

The eigenfrequency oq is the solution of the equation

jo2
aLþ o2

qj ¼ 0, (A.6)

obtained by inserting Eq. (A.1) into the homogeneous motion Eq. (A.3). For the Donnell theory and by only
considering the breathing motions, this equation can be written as

ðoq=oaÞ
4
� K2ðoq=oaÞ

2
þ K0 ¼ 0, (A.7)

where K0 ¼ ð1� n2Þðqpa=LÞ4 þ bðqpa=LÞ6 and K2 ¼ 1þ ðqpa=LÞ2 þ bðqpa=LÞ4. For the two solutions oq of
Eq. (A.6) the amplitude Uq can be calculated from Eq. (A.1). For thin and slender shells ða=Lo1Þ, only the
smaller solution has to be taken into account as the other solution is in the ultrasound-range frequency.
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[21] R. Picó Vila, J. Gilbert, F. Gautier, Study of the input acoustic impedance of a vibrating cylindrical shell: consequences on clarinet-

like instrument, Proceedings of the Seventh CFA/DAGA, Strasbourg, France, 22–25 March 2004.

[22] W.E. Zorumsky, Generalized radiation impedance and reflection coefficients of circular and annular ducts, Journal of Acoustical

Society of America 154 (6) (1973) 1667–1673.

[23] A.W. Leissa, Vibrations of Shells, NASA, Washington, DC, 1973.

[24] W. Soedel, Vibrations of shells and plates, Hardcover, second ed., 1993.
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